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Laminar-turbulent transition mechanisms for a supersonic boundary layer are 
examined by numerically solving the governing partial differential equations. It is 
shown that the dominant mechanism for transition at low supersonic Mach numbers 
is associated with the breakdown of oblique first-mode waves. The first stage in this 
breakdown process involves nonlinear interaction of a pair of oblique waves with equal 
but opposite angles resulting in the evolution of a streamwise vortex. This stage can be 
described by a wavevortex triad consisting of the oblique waves and a streamwise 
vortex whereby the oblique waves grow linearly while nonlinear forcing results in the 
rapid growth of the vortex mode. In the second stage, the mutual and self-interaction 
of the streamwise vortex and the oblique modes results in the rapid growth of other 
harmonic waves and transition soon follows. Our calculations are carried all the way 
into the transition region which is characterized by rapid spectrum broadening, 
localized (unsteady) flow separation and the emergence of small-scale streamwise 
structures. The r.m.s. amplitude of the streamwise velocity component is found to be 
on the order of 4-5 YO at the transition onset location marked by the rise in mean wall 
shear. When the boundary-layer flow is initially forced with multiple (frequency) 
oblique modes, transition occurs earlier than for a single (frequency) pair of oblique 
modes. Depending upon the disturbance frequencies, the oblique mode breakdown can 
occur for very low initial disturbance amplitudes (on the order of 0.001% or even 
lower) near the lower branch. In contrast, the subharmonic secondary instability 
mechanism for a two-dimensional primary disturbance requires an initial amplitude on 
the order of about 0.5 YO for the primary wave. An in-depth discussion of the oblique- 
mode breakdown as well as the secondary instability mechanism (both subharmonic 
and fundamental) is given for a Mach 1.6 flat-plate boundary layer. 

1. Introduction 
The laminar-turbulent transition process in a low-disturbance environment consists 

of several stages in the evolution of disturbances. The first stage involves the 
internalization of free-stream disturbances into the boundary-layer flow, i.e. the 
receptivity process (Morkovin 1969). The dominant receptivity takes place near the 
leading edge of the body and disturbances do not grow until a critical region is reached. 
The second stage, which starts beyond the critical region, is characterized by the 
amplification of infinitesimal disturbances which can be described by linear stability 
theory. For a two-dimensional low-speed boundary layer, these instability waves are 
referred to as Tollmien-Schlichting (TS) and Rayleigh waves for viscous and inviscid 
instabilities, respectively, and Mack modes (e.g. first and second modes, etc.) for 
viscous/inviscid instabilities (Mack 1969) which operate at higher Mach numbers. A 
linear amplification process may be relevant over a wide range of Reynolds numbers 
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depending upon the frequency and initial amplitude of the disturbance. When 
sufficiently high disturbance amplitude is reached through this linear growth, the 
evolution enters the third stage, where nonlinear interaction and a sequence of 
secondary instabilities cause laminar flow to break down to turbulence. 

For low-speed two-dimensional flow, two breakdown mechanisms have been 
identified both experimentally and theoretically. These consist of fundamental and 
subharmonic resonance mechanisms which lead to aligned and staggered lambda 
vortex structures, respectively (e.g. Klebanoff & Tidstrom 1959 ; Klebanoff, Tidstrom 
& Sargent 1962; Saric & Thomas 1984; Kachanov & Levchenko 1984). When a two- 
dimensional Tollmien-Schlichting wave gains sufficient amplitude, oblique modes with 
frequency equal to or half the frequency of the TS wave are excited which lead to the 
lambda vortex structure and constitute the secondary instability en route to transition. 
In incompressible flows, this secondary instability can take place at an initial TS 
amplitude of much less than 1 % based on the streamwise velocity component. 

Craik (1971) proposed a resonant-triad model which consists of a plane TS wave and 
a pair of oblique waves propagating at equal but opposite angles to the mean flow 
direction. Using solutions of the Orr-Sommerfeld equation, Craik was able to 
construct a wave triad such that the streamwise wavenumber of the oblique waves 
equals one-half of that of the plane TS wave and the phase velocity of all three waves 
is identical (resonance). He then showed that such a resonant combination leads to 
rapid growth of three-dimensionality, even though the oblique subharmonic waves are 
stable according to the Orr-Sommerfeld solutions. Experimental evidence of the 
subharmonic breakdown was provided by Kachanov & Levchenko (1977, 1984). They 
found a strong wave-triad resonance with a unique phase-locking relation between the 
TS and oblique waves as described by Craik’s model even though the excited oblique 
waves were not selected according to Craik’s criterion. 

In Herbert’s (1 983, 1988) Floquet-based secondary instability theory, oblique wave 
amplification under parametric resonance can be computed as an eigenvalue problem 
for a mean flow modulated by a finite-amplitude primary TS wave. Herbert was able 
to reproduce the amplitude evolution of both the primary and secondary (oblique) 
disturbances measured in Kachanov and Levchenko’s experiment. The secondary 
instability theory of Herbert can be applied to both fundamental and subharmonic 
mechanisms and to any set of oblique disturbances in contrast with Craik’s model 
where a unique phase relation between the TS oblique waves must exist according to 
the Orr-Sommerfeld equation. 

The experiment of Saric & Thomas (1984) was performed by using vibrating ribbons 
to introduce both primary (two-dimensional) and secondary (three-dimensional) 
disturbances. Corke & Mangano (1989) used heating wires to generate the desired 
disturbances and performed detailed measurement of the disturbance field. They 
showed that Craik’s resonant model is not necessary for the description of subharmonic 
breakdown and further verified the results of Herbert’s secondary instability theory. In 
both experiments, smoke-wire flow visualization demonstrates a staggered peak-valley 
vortex structure which is a characteristic of the subharmonic breakdown. In addition 
to the subharmonic and fundamental breakdown mechanisms, a combination 
resonance (or detuned secondary instability) studied extensively by Corke (1989) is 
also possible. In this mechanism, secondary disturbances consist of waves whose 
wavenumbers combine to yield the streamwise wavenumber of the primary two- 
dimensional wave. Corke concluded that a detuned mechanism leads to rapid filling of 
the spectrum and may be more relevant in natural transition. 

Several direct numerical simulations (DNS) of the Navier-Stokes equations have 
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also been aimed at understanding the breakdown mechanisms of incompressible flat- 
plate boundary layers. For instance, Spalart & Yang (1987) studied the breakdown 
process associated with a finite-amplitude two-dimensional wave and low-amplitude 
three-dimensional random disturbances. Their results explain very well why fun- 
damental breakdown was observed when the two-dimensional primary wave amplitude 
is large (Saric & Thomas 1984). Fasel, Rist & Konzelmann (1990) obtained good 
quantitative agreement for disturbance amplitudes with Kachanov & Levchenko’s 
(1984) experiment. A recent review of the contribution of DNS to understanding the 
physics of transition is given by Kleiser & Zang (1991). 

Compared to its low-speed counterpart, the transition mechanism in supersonic 
boundary layers remains poorly understood owing to the difficulties involved in 
instrumentation and the large amount of computational time required for direct 
numerical simulations. While a number of experiments have been performed on flat 
plates and cones in supersonic wind tunnels, they were all aimed at determining 
transition Reynolds numbers (e.g. Pate 1971; Chen, Malik & Beckwith 1989) as 
influenced by parameters such as wall temperature, nose bluntness, unit Reynolds 
numbers, etc. None of the experiments were focused on understanding the transition 
mechanism except for the experiments of Kendall(1967), who studied the evolution of 
first- and second-mode disturbances in the linear regime at Mach 4.5 using controlled 
disturbances, and Stetson (see Stetson & Kimmel 1992) at Mach 8. The results from 
other experiments at low supersonic Mach numbers (e.g. Laufer & Vrebalovich 1960; 
Kendall 1975; Demetriades 1989; Kosinov, Maslov & Shevelkov 1990) can best be 
described as ‘inconclusive ’ owing to various experimental difficulties and/or the effects 
of noise radiated by the turbulent wind-tunnel wall boundary layers. Only in NASA 
Langley’s Mach 3.5 ‘quiet’ tunnel is this noise field eliminated by maintaining the 
tunnel walls laminar but, unfortunately, no fundamental transition physics experiment 
has been performed in this unique facility even in the linear regime. However, the 
transition Reynolds number on a flat-plate model was found to be about 12 x lo6 in 
this wind tunnel as compared to only about 2.5 x lo6 in conventional supersonic wind 
tunnels, which shows the dramatic effect free-stream disturbances can have on 
transition. 

Temporal Navier-Stokes simulations are available from some authors (e.g. 
Erlebacher & Hussaini 1990; Pruett & Zang 1992) for supersonic and hypersonic flows. 
In these simulations, the time evolution of disturbances confined in a periodic box is 
studied under a quasi-parallel assumption. Qualitatively, temporal simulations offer a 
more economic way (since the spatial resolution required is minimal and the issues 
associated with boundary conditions in the streamwise direction are avoided) to help 
understand transition physics. However, in order to accurately describe the spatial 
evolution of disturbances and thereby provide a meaningful transition prediction, 
spatial simulations are needed. Owing to the increased demands on computational 
resources, only a limited number of compressible spatial simulations are available to 
date (e.g. Thumm, Wolz & Fasel 1989; Bestek, Thumm & Fasel 1992; Pruett & Chang 
1993). The application of secondary instability theory to compressible flat-plate 
boundary layers has been carried out by El-Hady (1992), Masad & Nayfeh (1991) and 
Ng & Erlebacher (1992). 

An alternative to spatial DNS is the newly emerging approach to transition studies 
based upon parabolized stability equations (PSE) (Herbert 1991 ; Chang et al. 1991 ; 
Bertolotti & Herbert 1991). In the PSE approach, the spatial evolution of disturbances 
is obtained by an efficient marching procedure which accounts for both nonlinear and 
non-parallel effects in the growing boundary layers. Linear and nonlinear PSE 
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calculations for incompressible and supersonic boundary layers yield results that are in 
remarkable agreement with those from spatial DNS (see Bertolotti, Herbert & Spalart 
1992; Joslin, Streett & Chang 1993 and Pruett & Chang 1993) but at only a small 
fraction of the computational cost of the latter. This makes PSE a promising 
theoretical tool for transition research. 

The main objective of this paper is to provide an in-depth study of the breakdown 
mechanisms in a supersonic flat-plate boundary layer using the PSE approach. 
Although the PSE method has been applied to second-mode disturbances in hypersonic 
flows (Chang & Malik 1993), here we will focus only on low-Mach-number supersonic 
flows and consider both subharmonic and fundamental secondary instabilities. For 
supersonic flows, the most amplified first-mode waves are oblique. Thus, these oblique 
modes will play an increasingly important role in the supersonic boundary-layer 
transition. One important feature of these oblique waves is that the interaction of a pair 
of oblique waves with opposite angles to the mean flow direction can produce a 
streamwise vortex. This streamwise vortex is damped linearly in the absence of concave 
surface curvature but, as we will show later, nonlinear interaction causes the 
streamwise vortex to grow at a rate which is much faster than that of the oblique wave 
itself and this strong growth initiates the oblique-mode breakdown process. Goldstein 
& Choi (1989) studied the nonlinear interaction of oblique waves in incompressible 
shear layers using asymptotic theory. They showed that three-dimensional effects cause 
nonlinearity to occur at much smaller amplitudes than it does in two-dimensional flows 
(see also Goldstein 1990). A brief account of the oblique breakdown for supersonic 
boundary-layer flows was earlier given by Chang & Malik (1992) (see also Bestek et al. 
1992) but the present paper provides a much more comprehensive report on the 
subject. Here, PSE calculations are carried all the way into the transition regime where 
a sequence of instabilities results in breakdown of the laminar flow. These instabilities 
for a Mach 1.6 boundary layer are discussed and the relevance of the present 
calculations to the prediction of boundary-layer transition is brought out. We 
formulate the problem for compressible flow past a flat plate in 92, present and discuss 
the results in 93, while conclusions are drawn in 94. 

2. Problem formulation 
We consider supersonic boundary-layer flow over a flat plate with a sharp leading 

edge as shown in figure 1. For M ,  > 1, a leading-edge shock is formed owing to the 
growing boundary layer. However, in the low supersonic regime, this shock is relatively 
weak and hence the Mach number behind the shock, Me,  is almost identical to the free- 
stream value, M,. In this paper, we focus on the instability waves and transition in the 
boundary-layer flow and effects of the weak leading-edge shock are neglected. As 
mentioned in Q 1, a comprehensive study of the transition mechanism should include 
the leading-edge receptivity process which occurs between x* = 0 and x* = x,* (x,* is 
the streamwise coordinate of the critical region). In this paper, however, we do not 
consider the receptivity problem and assume that free-stream disturbances have 
already been internalized and the eigenstructure associated with boundary-layer 
instability waves exists at x* = x,* where they are about to enter the unstable regime. 
The boundary-layer instability problem to be studied in this paper therefore includes 
a computational domain which begins at xt  and stretches to xt*, where laminar- 
turbulent transition takes place. The domain height in the wall-normal direction is 
set at y* = yz,,, which increases downstream to accommodate the boundary-layer 
growth. Free-stream boundary conditions are enforced at y* = yz,,. 
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Computational - 

I 

FIGURE 1. Schematic of supersonic flow over a sharp-leading-edge flat plate. 

The evolution of disturbances in compressible boundary layers is governed by the 
compressible Navier-Stokes equations 

(2.1) 

(2.2) 

aP* - + V . ( p * V )  = 0, 
at* 

p* [ g + ( V .  V )  v = - vp*  +V[h*(V- V ) ]  +v .  b*(V V + V V T ) ] ,  1 
(2.3) 

( V - V )  T* = V.(k*VT*)+-+ 3P* (V*V)p*  + @*, 1 at* 

where V =  (u*,v*, w*) is the velocity vector, p* the density, p* the pressure, T* the 
temperature, c3 the specific heat, k* the thermal conductivity, ,u* the first coefficient of 
viscosity, and A* the second coefficient of viscosity. The viscous dissipation function is 
given as 

@* = h*(V * v)z + $*[V V +  v V T ] 2 .  

The equation of state is given by the perfect gas relation 

p* = p*%T*, 

and the steady-state solution of the basic flow can be obtained by invoking the 
boundary-layer assumption. 

2.1. Compressible boundary-layer equations 
For boundary-layer flow over a flat plate, the governing equations can be derived by 
using the Levy-Lees transformation (see Hayes & Probstein 1959) 

where all quantities with subscripts e represent the corresponding boundary-layer edge 
values. For a flat-plate boundary layer in the absence of a pressure gradient, the 
similarity flow is governed by the following equations in the transformed coordinates: 

(CTf“)‘ +ff” = 0, 

(a, g’ + a2 f’f”)’ +fg’ = 0, 
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In (2.7), bothfand g are functions of 7 only. Here, the total enthalpy is denoted by H,  
the ratio of specific heats by y, and the edge Mach number is defined as 

The Prandtl number is defined as 

P*C$ Pr = - 
k* ’ 

In all the calculations herein (including basic flow and stability calculations), the 
viscosity p* is assumed to be given by the Sutherland law 

T*1/2 
N s m-2. 

1 + 110.4/T* 
p* = 1.458 x loT5 

The thermal conductivity k* can be computed by a similar formula. For the results 
presented in this paper, we assume a constant Prandtl number of 0.72. Stokes’s 
hypothesis is used for the second coefficient of viscosity as 

A* + 2/3p* = 0. 

The above similarity equations ((2.7k(2.8)) are solved by a fourth-order-accurate 
compact-difference scheme (Malik, Chuang & Hussaini 1982) and Newton’s method 
for the nonlinear iterations subject to no-slip wall boundary conditions. For the results 
presented in this paper, we use an adiabatic boundary condition for the wall 
temperature. 

2.2. Parabolized stability equations 
As shown in figure 1, the Cartesian coordinates are denoted by x*, y*, and z* to 
represent the streamwise, wall-normal, and spanwise directions, respectively. All the 
lengths are scaled by a reference length lo, velocity by u:, density by pZ, pressure by 
pZ uZ2, time by lo/uZ, and other variables by the corresponding boundary-layer edge 
values. The lengthscale lo to be used in all calculations presented in this paper is 
defined as 

lo = (v: X,*/UZ)1/2, 

where x,* is the location where calculations are initiated and v: is the kinematic viscosity 
at the boundary-layer edge. All non-dimensional quantities after the above 
normalization will be denoted by the same symbol but without the asterisk. 

The basic flow obtained by solving the boundary-layer equations (2.7) and (2.8) is 
perturbed by fluctuations in the flow, i.e. the total field can be decomposed into a mean 
value (boundary-layer solution) and a perturbation quantity : 

(2.9) I u = U + U ’ ,  zi = ii+zi’, w = O+w’, 

p = p+p’,  p = P+p‘, T = T+ T‘, 

p = F+p‘, A = h+h’, k = k+k‘. 
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Substituting (2.9) into the Navier-Stokes and state equations given by (2.1)-(2.4) 
and subtracting the steady mean flow from it, we obtain the nonlinear disturbance 
equations as 

where 4 contains the disturbance vector and is defined as 

(6 = (p ’ ,  u’, v’, w’, T’)? 

The scaling Reynolds number R, is defined based upon the boundary-layer lengthscale 
at x,* as 

R, = u,* lo/vz,  

while for the results to be presented in 93, we use a streamwise Reynolds number 
defined as 

where the local lengthscale 1, is based upon the local x* coordinate as 

R = U Z  lx/vz, 

1, = (VZ x*/u,*)1’2. 

Matrices I’, A, B, C, D,  V,,, V,,, V,,, V,., V,,, and V,, are Jacobians of the 
corresponding total flux vectors and are composed of a linear part with only mean flow 
quantities (denoted by superscripts 1 below) and a nonlinear part which contains 
perturbation quantities (denoted by superscripts n below). We note here that matrices 
I’, A, B, C, D have contributions from both inviscid and viscous terms, and thus 
contain terms of order one and of order l/R,,, while the right-hand side of (2.10) 
contains terms which are solely due to viscous effects. 

We assume that the given disturbance is periodic in time and in the spanwise 
direction; thus, the disturbance function 4 can be expressed by the following Fourier 
series : 

c o r n  

4 = C C XAn(x, y )  ei(nPz-mwt). (2.1 1) 
m--cc n=-m 

Here, the frequency w and wavenumber p are chosen such that the longest period and 
wavelength are 2x/w and 2x/p in the temporal and spanwise domains, respectively. For 
most stability problems of interest, it is sufficient to truncate (2.1 1) to only a finite 
number of modes, 

M N  

4 = C C. xmn(x, y )  ei(nPz-mwt), 
m=-M n--N 

(2.12) 

where A4 and N represent one-half the number of modes kept in the truncated Fourier 
series. 

In linear as well as nonlinear stability problems, we are interested in the evolution 
of xnzn along the streamwise direction. Within the framework of DNS, this evolution 
is obtained by numerically solving the governing equations for xmn (most simulations 
use discretization in time and solve for Fourier coefficients in the spanwise direction 
only). Since the Fourier expansion does not alter the characteristics of the 
Navier-Stokes equations, numerical solutions of the elliptic governing equations for 
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x,, are computationally expensive. Furthermore, because of the wave nature of the 
disturbances, x,, in general evolves as an oscillatory wave which grows (or decays) in 
the streamwise direction. To resolve these oscillatory motions for different Fourier 
modes whose amplitudes may vary by orders of magnitude in the computational 
domain, a highly accurate scheme and properly refined grid must be used. 
Consequently, an enormous amount of computational time is unavoidable. In the PSE 
approach, instead of solving for x,, directly, we adopt the idea of the multiple-scales 
method and further decompose xmn into a fast varying wave-like part and a slowly 
varying shape function and write xmn as 

Xrnn(X, Y )  = Yrnn(X,  Y )  d m n ( X ) ,  (2.13) 

(2.14) 

where Ymn is the shape function for the Fourier mode (rno,n/?) and a,, is the 
associated streamwise (complex) wavenumber. The notion here is to include the 
oscillatory motion in the wave part and solve only the evolution of the shape functions. 
Since the oscillatory motion is 'absorbed' by a properly chosen a,, (see discussion 
below), the shape functions would evolve slowly along the streamwise direction and 
thus alleviate the high-resolution requirement in the direct approach and significantly 
reduce the computational cost. The required computational effort is further reduced by 
invoking a parabolizing approximation of the governing equations for the shape 
functions, which will be discussed below. 

Upon substitution of (2.13), (2.14) together with (2.12) into the partial differential 
equations (2.10), we have the governing equations for shape functions of the (m, n)  
Fourier mode as 

" ,. 
where matrices D,,, A,,, and B,, are given by 

D,, = - irnwr' + Dz + iamn A' + inPC' - (i da,,/dx - a:,) Vbx/ R, 

A,, = A1-2ia,, V ~ , / R , - i n / W ~ , / R , ,  

B,, = Bz-iamn V~,/Ro-in/?V;,/R,. 

The left-hand side of (2.15) contains only linear coefficient matrices and all nonlinear 
terms are included in the forcing function F,, which is the Fourier component of the 
total forcing, F", defined as 

+ n a m n  PVkzIRo +n2P2V4zIR,, 

where all matrices with superscripts n denote corresponding coefficients containing 
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dependent variables q5 (nonlinear terms). The quantity F" is defined in physical space 
and can be evaluated by the Fourier series expansion 

(2.16) 
m=-&@ n--N 

Computationally, the Fourier decomposition of (2.16) can be done by using the fast 
Fourier transform (FFT) of F", which is evaluated numerically in the physical space. 
The corresponding linear PSE can be obtained by setting Fmn to zero in (2.15). 

In the quasi-parallel compressible linear stability theory (Mack 1969) where 
'normal-mode' analysis is employed, the shape function 'Y (for any given Fourier 
mode (m,n)) is assumed to be a function of y only (d!P/dx = 0); therefore, (2.15) 
reduces to the following system of ODE's: 

Lo !P= 0, (2.17) 
where the operator Lo is given by 

and the elements of matrices b, b and Viy are evaluated by assuming parallel mean 
flows (B = 0, dfl/dx = 0, etc. and da/dx = 0). In the above equation, subscripts nzn are 
dropped for simplicity. The above ODE's in conjunction with homogeneous boundary 
conditions then constitute an eigenvalue problem of the linear stability theory (see 
Malik 1990 for elements of matrices b, 6 and Vi,). 

Unlike the normal-mode analysis described above where the complex wavenumber 
amn is determined from the eigenvalue analysis, the decomposition (2.13) is not 
uniquely defined as one can arbitrarily alter the distribution of the wave part and the 
shape function part. In the PSE approach, we choose a complex wavenumber amn and 
construct the decomposition (2.13) such that the change of shape functions !Pm, 
along the streamwise direction x is of order 1/R, and the second derivative of 
!Pmn (a2 !Pmn/ax2) is negligible. With this assumption and after neglecting all terms 
of O(l/Rt), (2.15) reduces to 

(2.18) 

Equation (2.18) describes the evolution of the shape function Ymn and is 'nearly' 
parabolic in the sense that second derivatives in x (associated with streamwise viscous 
diffusion) are absent and the A elliptic effect associated with the wave part is absorbed 
in matrices Om,, A,, and Bmn. We note that in addition to the streamwise viscous 
diffusion, the upstream acoustic wave which is still present in the above formulation is 
also responsible for the elliptic effect. This upstream wave propagation is associated 
with the left-running characteristic in the (x, t)-plane for the inviscid Euler equations 
(i.e. the left-hand side of (2.10)). Within the framework of inviscid gas dynamics, it can 
be shown that when the flow is subsonic, there exists an upstream acoustic wave which 
makes the Euler equations elliptic. Owing to its inviscid origin, the upstream acoustic 
wave (and the elliptic effect) is always present regardless of the approximation on the 
streamwise viscous diffusion. Therefore, an additional approximation is needed for a 
stable marching solution. 

For compressible flows, the upstream acoustic wave arises as a characteristic of the 
Euler equations and all inviscid terms contribute to it. However, one can make 
approximation to the pressure gradient term in the streamwise momentum equation 
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and alter the left-running characteristic as is done in the parabolized Navier-Stokes 
(PNS) equations (see Vigneron, Rakich & Tannehill 1978). For the partially 
parabolized equations, (2.1 8), we consider the streamwise momentum equation which 
contains the pressure gradient term ap'/ax written here as 

%E ax = ( ia , , f i , ,+Q~)exp[ i (  ax ~oam,(~)d~+n/3 .z - rnwr  11 , (2.19) 

where 52 is a multiplier yet to be defined. Note that the contribution of the wave part 
(iafi,,) is absorbed in the source term D,, Y,, in (2.18). If 52 = 1, the pressure- 
gradient term is completely retained and i3fia,,/ax allows upstream acoustic 
propagation. For incompressible flow, it can be shown (Li & Malik 1992) by using 
Fourier stability analysis that the condition for numerical stability requires that no 
more than 2x steps per TS wavelength should be taken for a marching solution (i.e. 
aAx > I where Ax is the marching step size). Fourier analysis of the compressible 
system (2.18) (as well as numerical experiments) also reveals that marching solutions 
are stable only when aAx is greater than a threshold value. This threshold value 
depends upon various factors such as Mach number, grid aspect ratio and disturbance 
frequency, etc. The step size limitation is not severe as computations show that a PSE 
solution with only 3 steps per TS wavelength agrees very well with a higher-order DNS 
solution using 60 grid points per wavelength. 

For supersonic flows, the upstream influence through the afimn/i3x term is possible 
only in the subsonic layer near the wall. To obtain a stable marching solution without 
step size limitation, we choose the 52 value in (2.19) according to an approximation 
suggested by Vigneron et al. (1978) for mean flow computations using the PNS 
equations. This approximation suppresses part of the pressure-gradient term in the 
streamwise momentum equation by selecting 52 according to 

= 1, Mx> 1, (2.20) 

where M ,  is the local (y-dependent) Mach number in the boundary layer. In the 
supersonic portion of the boundary layer, no additional approximation is made since 
52 = 1. The net effect on the subsonic portion is that characteristic eigenvalues of the 
governing equations are all positive (right-running) and the upstream influence is 
suppressed. For a stable marching solution of the PSE without step size limitation, we 
evaluate 52 from (2.20) and use it in (2.19). 

In the incompressible limit, the use of SZ in (2.19) is equivalent to setting i3fimn/i3x to 
zero. While this is formally true only in special cases (e.g. the Gortler vortex problem), 
the approximation yields solutions which compare very well with accurate results from 
the full Navier-Stokes equations (Joslin et al. 1993). This is because most of the 
ellipticity is captured in the iaDrnn term. The resulting parabolized governing equations 
for the shape functions thus can be solved by an efficient marching procedure along the 
streamwise direction. For compressible flows, linear and nonlinear PSE results with 
the above approximation have been compared with compressible spatial DNS (Pruett 
& Chang 1993) with remarkably good agreement; however, while DNS required about 
30 hours of Cray-YMP time, a comparable PSE solution was obtained in less than 2 
minutes. 

The choice of a,, plays a crucial role in the accuracy of the parabolizing 
approximation. We now describe the approach we take to determine a,,. The 
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evolution of shape functions is monitored during the process of marching and amn is 
updated by local iterations at a given x according to the change in a selected dependent 
variable, say !PI. At a given location x,, we assume that the streamwise wavenumber 
is given by al. An 'effective' wavenumber is then evaluated based on 

. 1 dYl 
a = al-l--. 

Y, dx 
(2.21) 

The real part of this effective wavenumber represents the phase change of the 
disturbance while the imaginary part gives the growth rate, both corresponding to the 
variable !PI chosen. A disturbance ( !Pl) is unstable if the imaginary part is less than 
zero. The updating procedure for a is repeated by using (2.21) until the change in a is 
smaller than a prescribed tolerance (typically 10-12). 

Since the shape function vector Ym, is a function of y and contains five dependent 
variables (i,i, etc.), the updating procedure above is equivalent to choosing a 
normalization of the disturbance vector such that dYl/dx is zero at a particular y- 
location. Accordingly, the value of a computed by (2.21) depends on the y-coordinate 
and the selected dependent variable !PI. In this study, therefore, we use the following 
expression to determine a: 

(2.22) 

where superscripts t denote complex conjugates and E is given as 

E = J:p(li12 + 10l2 + lG12) dy, 

which is independent of the y-coordinate. 
As shown in figure 1, the streamwise computational domain extends from x,* to any 

arbitrary x*. It was pointed out that there is an implicit assumption that the 
disturbance already exists in the boundary layer in the form of an eigensolution at 
x* = x:. Leading-edge receptivity due to free-stream acoustic waves and the excitation 
of instability waves via the interaction of surface non-uniformity and unsteady free- 
stream disturbance in supersonic boundary layers have been studied by Fedorov & 
Khokhlov (1991, 1992) and Choudhari & Streett (1993). In this paper, the effect of 
initial amplitude at x,* is studied by choosing different amplitude combinations of the 
fundamental Fourier modes selected in the nonlinear calculations. The solution of 
(2. 18) also requires proper boundary conditions in the wall-normal direction. We apply 
the homogeneous Dirichlet conditions 

i = j j = $ = T = O ,  y = O  (2.23) 

at the wall and in the free stream 
$ = f i = $ = T = O ,  y j w ;  (2.24) 

although these can be easily replaced by other conditions such as the Rankine- 
Hugoniot conditions at the shock (Chang, Malik 8z Hussaini 1990) for supersonic 
flows. 

For nonlinear calculations, (2.18) is solved for all Fourier modes subject to 
boundary conditions (2.23) and (2.24), except for the mean flow distortion mode, (0,O). 
For this mode, we replace the boundary condition at the far field, (2.24), by 

1 

A 

A ao,, - A 1 

u,, = - - woo = r,, = 0, 
aY 

(2.25) 
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to account for the change of displacement thickness due to the distortion of the mean 
flow profile (u+ Goo) arising from nonlinear interactions. This Neumann condition for 
the normal velocity allows the mean flow given by the boundary-layer solution to 
adjust itself in order to assure mass balance. 

Numerical solution of the parabolized stability equations (2.18) requires dis- 
cretization in both x- and y-directions. Since the boundary layer grows in the 
streamwise direction, we expect that the solution for the shape functions will also grow. 
To ensure sufficient resolution as the disturbances evolve downstream, discretization in 
the wall-normal direction must be able to account for the growth of the boundary 
layer. Instead of solving (2.18) in Cartesian coordinates, we transform these equations 
to a generalized coordinate system and discretize the streamwise derivatives by a 
backward Euler differencing and wall-normal derivatives by a fourth-order-accurate 
finite-difference scheme. 

3. Results and discussion 
All the calculations presented in this paper have been made for a flat-plate boundary 

layer at adiabatic wall conditions. The boundary-layer edge Mach number is taken to 
be 1.6 and the edge temperature is 300 K. We first briefly discuss the linear stability 
of this boundary layer and the nonlinear development and secondary instabilities will 
follow. 

3.1. Linear stabiiiry 
It is useful to first give some results from linear theory to determine the range of 
unstable disturbance frequencies. Figure 2 gives the neutral curves for the wave angles 
of O", 40°, 50" and 60" in the frequency-Reynolds number plane where the non- 
dimensional frequency F is defined as 

F = 2 n ~ z f ' ~ " ' / ( ~ z ) ~  

and the Reynolds number R is the local value as defined in $2.2. Some of the 
frequencies for which nonlinear PSE calculations will be performed have been marked 
on the plot. These neutral curves have been computed using quasi-parallel theory 
(equation (2.17)). The boundaries of the unstable region in figure 2 will shift somewhat 
owing to non-parallel effect. In figure 3, we plot linear PSE results for the integrated 
growth N,, defined as 

where apu is the total non-parallel growth rate measured at the location of the peak 
mass flow fluctuation. As is evident from figure 3, the neutral locations have shifted 
slightly as a result of the boundary-layer growth and the total growth of oblique 
disturbances is considerably higher than that of two-dimensional disturbances. For this 
case, the non-parallel effect (which is accounted for in the PSE calculation) is 
destabilizing for oblique disturbances and is slightly stabilizing for the two-dimensional 
disturbance. 

3.2. Secondary instability 
In this section, we first consider the nonlinear interaction of two-dimensional and 
three-dimensional waves. We set up the problem in the framework of PSE by including 
in the initial conditions a two-dimensional wave (mode (2,O)) with a frequency of 
F = 0.4 x and two pairs of three-dimensional disturbances with equal spanwise 
wavenumbers of P/R = f0.96 x and frequencies of 0.4 x lop4 (mode (2,l) and 



Oblique-mode breakdown in supersonic boundary layers 335 

Oblique angle 

0" 

40" 

50" 

60" 

- - - - - - - - 

R 

FIGURE 2. Neutral curves for Mach 1.6 flat-plate boundary layer. 
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FIGURE 3. Non-parallel N factor from linear PSE solutions for various 
two-dimensional and oblique disturbances. 

(2, - 1)) and 0.2 x (mode (1,l) and (1, - I)), corresponding to fundamental and 
subharmonic secondary disturbances, respectively. The initial conditions of all three 
modes are generated by performing local linear (non-parallel) eigenvalue calculations 
at the inflow plane which in this case is located at R = 520 where the two-dimensional 
wave just enters the unstable regime. The selected spanwise wavenumber corresponds 
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FIGURE 4. Evolution of maximum r.m.s. u-velocity perturbations for various two-dimensional 
wave amplitudes : (a) A,,  = 0.5 YO, 0.1 YO ; (b)  A,,  = 3 YO, 1 %. 

to wave angles of 47" and 65" for the fundamental and subharmonic modes, 
respectively, at the inflow plane. Self-interaction of the (1,l) mode would excite the 
(2,2) mode which can also be considered as a fundamental secondary disturbance. 

For all nonlinear results presented herein, we refer to the amplitude of any Fourier 
mode as the r.m.s. value defined as 



Oblique-mode breakdown in supersonic boundary layers 337 

500 

Z 250 

0 
1250 

500 

z 250 

0 IL A 
2000 

1500 

Y 

D 

D 

D 

n 
I I 

. 
a 

a 

a 

A 

u 

0 

0 
n 
I 

1750 
X 

2500 
X 

2000 

3000 

FIGURE 5. Instantaneous u-velocity contours in the (x, z)-plane at y * / l ,  = 2.3 for two different 
two-dimensional wave amplitudes: (a) A,, = 3 %, (b)  A,, = 1 %. 

where 7 = 2x/w is the time period associated with the computational domain. The 
quantity q5mn is the amplitude of the Fourier component of the total perturbation (as 

(3.3) defined in (2.12)), ei(npz-mwt) 
q5mn = l (xmn)maz I? 

measured at the corresponding peak location in the wall-normal direction. From linear 
stability theory (as well as linear PSE), maximum fluctuation occurs in the streamwise 
velocity perturbation among all flow variables at Mach 1.6. Therefore, we use the u- 
velocity component in (3.2) to represent the evolution of the disturbance field in the 
nonlinear results and initial conditions are input based upon the r.m.s. amplitude of the 
u velocity. 

Both secondary disturbances are assigned an initial amplitude (Asd)  of 0.001 YO and 
the amplitude of the two-dimensional wave (Azd)  is varied from 0.1 % to 3 YO, in order 
to study the effect of the amplitude of the two-dimensional wave on secondary 
instability. It is known that in incompressible flow, secondary instability is present even 
for very small initial Azd .  Seven temporal modes and five spanwise modes (M = 7, 
N = 5) are used in the present calculations. Figures 4(a) and 4(b) show the resulting 
maximum r.m.s. amplitudes of the u-velocity perturbation for the three externally 
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FIGURE 6. Evolution of maximum r.m.s. u-velocity perturbations for various 
Fourier modes for A,, = 0.5 %. 

excited modes, (2,0), (1,l)  and (2,l). For the A,, = 0.1 YO case, there is mild growth 
of the subharmonic disturbance but it eventually dies out. Strong growth of secondary 
disturbances is evident only for the cases with A,, equal to or greater than 0.5 YO. For 
the 3 YO case, both subharmonic and fundamental secondary modes grow rapidly and 
the (2,l)  mode has slightly higher amplitude than the (1,l) mode, indicating a mixed 
subharmonic-fundamental secondary instability. For the remaining two cases 
(A,,  = 0.5 YO and 1 %), the subharmonic mode (1,l) exhibits much stronger growth 
than the (2,l) mode and the subharmonic-type instability prevails. 

To further demonstrate that the dominant breakdown mechanism switches from 
subharmonic to fundamental type as the TS wave amplitude is increased, we plot the 
streamwise velocity contours in the (x, z)-plane at a normal distance of y*/l ,  = 2.3 near 
the critical layer in figures 5(a) and 5(b). Both x- and z-coordinates are normalized 
with lo, the boundary-layer lengthscale at R = 520; thus x = R2/Ro.  For the 3 % case, 
an aligned lambda vortex pattern is present near the end of the simulation although the 
amplitude evolution (figure 4b) shows a mixed subharmonic-fundamental-type 
instability, while in the 1 YO case a subharmonic-type staggered contour pattern is 
clearly evident. These results are consistent with the incompressible experiment of Saric 
& Thomas (1984) where it was found that by increasing the amplitude of the two- 
dimensional TS wave, the dominating mechanism is shifting from subharmonic to 
fundamental breakdown. Similarly, Corke & Mangano’s (1 989) experiment was done 
with a low-amplitude TS wave; therefore, no fundamental mechanism was observed. 

To explore in more detail the evolution of various disturbance modes, we plot the 
maximum u-velocity r.m.s. amplitude of various Fourier modes for the 0.5 YO case in 
figure 6. Unlike the subharmonic instability where the spectrum shows a staggered 
pattern, all harmonic waves are excited owing to the presence of fundamental mode 
(2,l). Among the harmonic waves shown in the figure, mode (0,l) gains energy from 
the interaction of (2,O) and (2,l). Similarly, mode (1,2) (from (2,l) - (1, - l)), (2,2) 
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FIGURE 7. Average wall shear versus Reynolds numbers for various two-dimensional wave 
amplitudes compared with the unperturbed laminar solution. 

(from (1,l) + (1, l)), and (0,2) (from (1,l)  + ( - 1, l )  and (2,l) + (- 2,l)) are excited 
early in the simulation. The subharmonic mode overtakes the primary wave at about 
R = 1200 and tends to saturate towards the end of the calculation while the streamwise 
vortex modes (0,2) and (0,4) continue to grow very rapidly. Near the end, the damped 
primary wave (which has passed the upper-branch neutral point) and the other 
harmonics (e.g. (0,l)  and (2,l)) undergo fast growth because the subharmonic and 
streamwise vortex modes have reached very large amplitudes (on the order of a few 
percent). This fast growth triggers a spectrum broadening and the flow is heading 
towards transition. 

To determine the location of transition onset, we plot the average wall shear versus 
Reynolds number for the above three cases (namely A,, = 0.5 YO, 1 YO and 3 YO) in 
figure 7. One clearly sees the rapid rise of shear stress indicating the onset of transition. 
For the 0.5% case, transition occurs at a Reynolds number R of about 1500 which 
corresponds to the plate-length Reynolds number of 2.25 x lo6, a typical value found 
in conventional supersonic wind tunnel experiments. Near the transition onset 
R = 1500, the maximum streamwise velocity perturbation has reached an amplitude of 
about 3.7% for the subharmonic component. For the case of AZd = 1 %, this 
amplitude is about 5 YO. For A,, = 3 YO, the amplitude of the fundamental mode is also 
5 YO (figure 4b). Thus in these three cases, the amplitude of the most energetic mode is 
in the range of 3.7-5% at the onset of transition. 

One major assumption in the Floquet-based secondary instability theory is that the 
primary disturbance remains unaffected during the rapid secondary disturbance 
growth. In the PSE framework, such an assumption is not needed and the backreaction 
can be captured in the analysis. In figure 8, we compare the above A2,  = 0.5 YO results 
with the corresponding linear PSE solutions for modes (2,0), (1 , l )  and (2,l). It is 
clearly seen that the primary TS wave follows the linear growth for quite a long 
distance while the subharmonic wave departs from its linear solution right after the 
onset of secondary instability at R = 700. During the rapid growth of the subharmonic 
mode (700 < R < 1400), the primary two-dimensional wave follows linear growth, 
showing essentially no backreaction. The fundamental mode (2,l) initially grows 
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slower than the linear rate but beyond the upper (linear) neutral point it continues to 
grow modestly. At a Reynolds number of 1400, the subharmonic mode has reached an 
amplitude of about 2 %, Beyond this Reynolds number, the two-dimensional primary 
wave starts to deviate from its linear solution and, as shown in figure 6, other 
harmonics including the (2,l) mode grow very rapidly. In this regime, the backreaction 
has forced the primary wave to be re-energized and the highly nonlinear nature of the 
disturbance field makes the secondary instability theory invalid. Similar backreaction 
and re-amplification of the primary disturbance has also been observed in 
incompressible Navier-Stokes simulations (e.g. Spalart & Yang 1987; Zang & 
Hussaini 1990). 

The amplitude evolution in figure 6 only shows maximum velocity perturbations. To 
better visualize the evolution of velocity shape functions, we plot the profiles of the u- 
velocity perturbation for (2,0), (1, 1) and mean-flow distortion (MFD) modes at 
various locations in figures 9 (a), 9(b) and 9 (c), respectively. The y-coordinate shown in 
these figures has been normalized with respect to the lengthscale I,, at R = 520. The 
peak amplitude of the primary mode occurs near the wall and shifts outwards as the 
boundary layer grows. Although the peak of the primary mode grows (and decays) 
linearly for R < 1400 (as in figure 8), the nonlinear effect has distorted the profile, 
resulting in a second hump (for R = 1100, 1251, 1349) below the maximum location, 
invalidating the shape assumption of the Floquet-based secondary instability theory. 
The subharmonic profiles shown in figure 9 (b) have similar shapes for all six locations. 
The peak of this mode occurs at y*/l, = 2.5 (1, is the local boundary-layer lengthscale 
defined in 92.2) for all Reynolds numbers shown, which agrees with Ng & Erlebacher’s 
(1992) secondary instability theory results. The reason why the nonlinear distortion of 
the primary wave does not appear to influence the secondary ( 1 , l )  mode lies in the fact 
that the secondary instability resides above the outer peak in the primary mode and not 
near the wall where nonlinear distortion is most evident. 
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FIGURE 10. Mean and r.m.s. u-velocity distribution at various downstream locations along the 
spanwise coordinate at y * / f ,  = 2 . 3 :  (a) mean value, (b )  r.m.s. value. 

It is interesting to note that the mean-flow distortion mode (figure 9 c )  is 
negative for R < 1400. This shows that the energy is being transferred from the mean 
flow to the instability waves. For R = 1448 and above, the MFD mode shows a 
negative value in the outer part of the boundary layer and a positive near the wall. 
Thus, energy is being extracted from the mean flow in the outer part where secondary 
instability structure resides and it is being added to the mean flow near the wall, making 
the mean flow profile fuller as the flow heads towards transition to turbulence. 

Figures 10(a) and 10(b) show the variation of both mean and r.m.s. values of the 
streamwise velocity at y*/l, = 2.3 along the spanwise coordinate for various Reynolds 
numbers. The z-coordinate is normalized by 1, and two spanwise wavelengths 
(A,  = 2n/,8) are shown. The mean values, ust, defined as 

(3.4) 

are obtained (figure 10a) by taking the time average of the instantaneous u velocity; 
thus, only stationary modes (including mean flow distortion and all streamwise vortex 
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modes) contribute to it. For small Reynolds numbers, the three-dimensional effect is 
weak and the mean value is uniform across z (e.g. at R = 1251). For a Reynolds 
number of 1349 and beyond, three-dimensionality becomes important as the 
streamwise vortex modes gain energy (see figure 6) .  It is evident from figure lO(a) that 
the (0,2) streamwise vortex mode dominates (by noting two peaks in one spanwise 
wavelength A,) owing to the interaction of the oblique subharmonic waves. We will 
later discuss in more detail the oblique mode breakdown mechanism where the primary 
modes are oblique and such an oblique-mode interaction dominates the transition 
process. 

The r.m.s. values (figure lob) were calculated by taking the root mean square of all 
travelling Fourier modes (therefore excluding mean flow distortion and vortex modes) : 

As can be seen, u,,, decreases from R = 1003 to R = 1251 because of the decay of the 
primary two-dimensional wave. For Reynolds numbers R > 1250, the subharmonic 
mode overtakes the primary wave and the level of r.m.s. disturbance amplitude 
increases accordingly. Comparing figures 10(a) and lO(b), it is clear (e.g. at R = 1448) 
that the maximum r.m.s. amplitude coincides with the minimum in the mean flow and 
vice versa. In other words, the travelling modes tend to concentrate in the upwash 
region of the streamwise vortex mode. This situation is similar to that found in the 
interaction of travelling and stationary crossflow disturbances in three-dimensional 
boundary layers (Bippes 1991 ; Malik, Li & Chang 1994). The basic shape of the r.m.s. 
velocity distribution in figure 10(b) looks quite similar to that found by Corke & 
Mangano (1989) in the low-speed experiments. At R = 1500, the peak u,,, reaches 
about 5 %  and additional local peaks appear as the higher harmonic waves (e.g. the 
(2,2) mode) gain considerable energy. This process of spectral broadening will 
continue as the flow goes through transition. 

For the 0.1 ?LO case shown in figure 4(a), the initial amplitude of the two-dimensional 
wave is too small to trigger strong secondary instability for either fundamental or 
subharmonic modes, each of which has an initial amplitude of 0.001 %. If the 
disturbance environment does not prefer two-dimensional modes, it is likely that both 
two- and three-dimensional modes would have about the same initial amplitudes. For 
supersonic flows, since oblique modes grow much faster than the two-dimensional 
waves, the oblique modes will come to dominate the transition process. In the next 
section, we discuss this mechanism in some detail. 

3.3. Oblique-mode breakdown 
In the next simulation, we force the flow with only a pair of oblique waves, which we 
now denote as ((1,l) and (1, - 1)) modes, and no other harmonics are included in the 
initial conditions. To allow the imposed oblique wave to have a larger linear 
amplification, we choose a lower frequency of F = 0.2 x and a spanwise 
wavenumber of P / R  = f0.83 x lo-*, which corresponds to an initial wave angle of 
about 60" at the starting location near the lower-branch neutral point ( R  = 750). The 
initial amplitude of the oblique waves is assumed to be 0.1 YO and nine Fourier modes 
are kept in both temporal and spanwise directions ( M  = N = 9). 

The resulting maximum velocity amplitude evolution is shown in figure 11 for some 
of the representative modes. Like that of the subharmonic secondary instability, the 
energy cascade exhibits a staggered or 'checkerboard' pattern, i.e. among two- 
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FIGURE 1 1 .  Evolution of maximum r.m.s. u-velocity perturbations for the oblique-mode 
breakdown; F = 0.2 x and PIR = 0.83 x lo-*. 

dimensional modes, only (2,0), (4,0), (6,0), etc. are excited and for I/? modes, only 
(1, l), (3, l), (5 ,  l), etc. gain energy. The remaining harmonic components (e.g. (l,O), 
(3,0), (0, l), (2, l), (2,3), etc.) are not excited throughout the simulation. The 
streamwise vortex mode (0,2) grows very rapidly because of the interaction of the 
oblique waves ((1,l)-(1, - 1)). Among the active harmonic waves, the (1,3) mode 
starts at an amplitude of about lop9 and grows faster than that of the (0,2) mode, as 
it gains its energy from the interaction of (1,l)  and (0,2) modes. Near the end of the 
calculation, the (1,3) mode overtakes the already saturated (0,2) mode. The interaction 
of these two modes feeds back energy into (1,l)  mode (through (1,3) - (0,2)). At this 
stage, almost all harmonic waves have reached about 1 YO (or higher) in amplitude and 
the flow is transitional (see the wall shear stress plot below). 

The crucial mechanism in the above oblique-mode breakdown process is the 
nonlinear interaction among a wave-vortex triad, i.e. (1, l), (1, - 1) and (0,2). This 
triad interaction can be better understood in figure 12 where the amplitudes of both 
(1,l)  and (0,2) modes are compared with those from corresponding linear PSE 
solutions. The linear solution of the vortex mode is obtained by using linear PSE with 
a prescribed initial condition at R = 750. As can be seen, in the nonlinear calculation, 
the oblique mode is amplified linearly while the vortex mode grows at a much higher 
rate than its linear counterpart. In the absence of the oblique mode, the vortex mode 
would have followed the linear solution. The nonlinear forcing of the vortex mode 
mainly comes from the oblique wave since it is the dominating mode over a long range 
of x. We note here that the (0,2) mode is stable according to the classical linear stability 
theory and the reason why our linear PSE solution in figure 12 shows a region of initial 
growth (for R < 1000) is linked to an ‘imperfect’ (or non-eigenmode) initial condition 
which is subject to transient growth, a phenomenon discussed by Schmid & Henningson 
(1992) for incompressible flow. 



Oblique-mode breakdown in supersonic boundary layers 345 

10-2 

10-3 

(umx)' 

10-5 

10" 

FIGURE 

10-2 

10-3 

u I I Nonlinear 

uo2 Nonlinear 
A u I 1  Linear 

o uo2 Linear 
(umx)' 10- -.-.- 

10-5 

00000000000000000000000000OOOOOOOOO 

10" 
1000 1250 1500 

R 

FIGURE 12. Comparison of linear and nonlinear solutions for the wave-vortex 
triad under an oblique-mode breakdown. 

u I I Nonlinear 
A u I 1  Linear 

-.-.-____ uo2 Nonlinear 
o uo2 Linear 

0 0 00000000000000000000000000OOOOOOOOO 

1000 1250 1500 

R 

12. Comparison of linear and nonlinear solutions for the wave-vortex 
triad under an oblique-mode breakdown. 

lo-' 

10-2 

10-3 

} Full nonlinear 
uoo 

800 1000 1200 1400 1600 

R 
FIGURE 13. Comparison of wave-vortex triad and full nonlinear solutions under 

an oblique-mode breakdown. 

The above results also indicate that the wave-vortex triad interaction is a 
combination of both linear and nonlinear processes. The oblique modes (1,l) and 
(1, - 1) grow linearly, while the growth of the vortex mode is mainly due to nonlinear 
forcing from the oblique wave and the linear transient effect only plays a minor role. 
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FIGURE 15. Time sequence of spanwise vorticity contours under an oblique-mode breakdown, 
showing contours in the (x,y)-plane at z = 0 (valley plane). 

However, surface curvature could appreciably affect the linear mechanism by either 
suppressing (convex curvature) or enhancing (concave curvature) the growth of the 
vortex mode. In figure 13, we compare full nonlinear solutions to a simplified nonlinear 
calculation obtained by keeping only the wave triad and the mean flow distortion in 
the Fourier series (equation (2.12)) and the remaining harmonic waves are artificially 
set to zero. It clearly shows that such a simplified triad interaction produces results that 
agree with those from full nonlinear calculations. Only towards the end of the full 
nonlinear calculation when other harmonic waves such as (1,3), (2,O) etc. reach large 
amplitudes, does the full nonlinear solution depart from the simplified triad analysis. 
This departure can be attributed to the nonlinear effect of the vortex mode and the 



348 C.-L. Chang and M .  R. Malik 

10.0 -; 

7.5 ; 

y 5.0 - 

R=783 

7.5 
'O'O I 

0 25 50 75 100 

R =  1453 

y 5.0 

2.5 

0 25 50 75 100 
2 

5.0 

2.5 

0 

10.0 

7.5 

5.0 

2.5 

0 

R =  1360 

R= 1496 

25 50 15 100 
z 

FIGURE 16. Instantaneous streamwise vorticity contours in the ( y ,  z)-plane at 
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growth of the (1,3) mode. Without considering all harmonic components other than 
the triad, the streamwise vortex mode (0,2) eventually reaches an equilibrium state 
with about 10 YO amplitude. These results suggest that a simplified analysis similar to 
the secondary instability theory can be constructed to describe the underlying 
mechanism for the oblique-mode breakdown process. However, in the light of the full 
nonlinear results shown in figure 11, such a simplified theory would become invalid 
near the transition onset. The wave-triad stage of the oblique-mode breakdown process 
is also connected to the vortex/wave interaction theory of Hall & Smith (1989, 1991) 
but we point out that, in the present case, even before the vortex has a chance to 
substantially alter the mean flow, harmonics such as (1,3) mode become dominant and 
need to be accounted for in the analysis. 

The evolution of u-velocity shape functions of the triad (1, l), (0,2), and the mean- 
flow distortion is plotted in figures 14(a)-(c), respectively. Only representative 
locations in the nonlinear region are shown. For R < 1450, the oblique mode grows 
linearly (see figure 12) and the amplitude function retains its linear shape. The (0,2) 
mode peaks at a slightly larger y than the (1,l) mode, indicating that nonlinear 
interaction between these two modes takes place slightly off the critical layer where the 
oblique mode peaks. In this region, the MFD mode is positive near the wall and 
negative away from the wall, in contrast to the secondary instability case shown in 
figure 9(c) where the MFD mode has all negative values when resonance occurs. At 
R = 1450, the maximum amplitude of the vortex mode reaches about 2.6 Yo while the 
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MFD mode is less than 1 YO. This implies that in the linear region of the oblique mode 
energy exchange between unsteady disturbances and the mean flow is through the 
vortex mode (0,2) instead of the MFD mode. In the highly nonlinear region 
( R  > 1450), both the (1,l) and (0,2) modes change shape rapidly, shown by the 
appearance of additional local extremums. Furthermore, a large portion of the MFD 
mode has negative values while the (0,2) mode decays in amplitude. This indicates that 
the energy exchange in the strongly nonlinear stage is mainly between unsteady 
disturbances and the MFD mode. 

In figure 15 we plot the time sequence of the spanwise vorticity contours in the (x, y)- 
plane where the r.m.s. wall shear is maximum (valley plane). High shear develops near 
the end of the simulation for x > 2700 where a distinct kink in vorticity distribution is 
visible. The streamwise vorticity contours in the (y, z)-plane at several downstream 
locations are shown in figure 16. Initially, the streamwise vorticity contours contain 
only the dominant oblique wave (at R = 783). At R = 1360, the amplitude of the (0,2) 
mode is only slightly lower than that of the (1,l) mode (see figure 1 1) and therefore the 
vorticity contour is slightly deformed. In the next two plots, at R = 1453 and 1496, 
many modes have reached amplitudes comparable to the (1,l) mode; consequently, 
many small structures begin to appear as the flow is becoming transitional. A distinct 
feature of the oblique-mode breakdown is the early breakup of streamwise vortex : for 
instance, at R = 1453 (corresponding to x = 28 15 in figure 19 ,  the streamwise vorticity 
contours show the appearance of small-structure vortices while the region of intense 
high shear (spanwise vorticity) which often characterizes transition onset is yet to 
appear (see figure 15). The cause of this rapid vortex breakup is the rather fast 
spectrum broadening in the spanwise direction associated with the highly amplified 
(0,2) and (1,3) modes. 

Figure 17 (plate 1) depicts the instantaneous streamwise velocity contours in the 
(x,z)-plane at a wall-normal distance of y*/l, = 2.3. It shows the oblique-mode 
breakdown where a high-speed streak (in red) splits into two tips and one of those tips 
then branches into two. These high-speed regions are engulfed by low-speed regions 
which also have their own little islands of high-speed regions and the whole pattern 
gives the impression of a ‘fingered’ structure extended in the streamwise direction. It 
should be cautioned here that more Fourier modes may be required to capture the fine 
details of the flow structure towards the very end of the calculation. 

Figures 18(a) and 18(b) show the mean and r.m.s. u-velocity distributions near the 
critical layer at y*/l, = 2.3 (which gives the maximum r.m.s. values) along the spanwise 
direction for two wavelengths of the oblique mode, At R = 1250, the mean flow is 
almost spanwise-uniform while the u,,, distribution shows strong three-dimen- 
sionality. At R = 1400, the mean flow becomes three-dimensional and the peak u,.,, 
increases to about 2 %. Note that at z = 25 where mean flow has a maximum u,,, has 
a minimum, and that u,,, is maximum at z = 50 which corresponds to a minimum in 
the mean flow. At R = 1449, the low-speed mean-flow region begins to show 
oscillations and a new dip appears in the high-speed region at z = 25 for R = 1466. At 
R = 1487, these oscillations are intensified and the high-speed region at z = 25 has 
become a low-speed region by splitting into two separate high-speed regions, one on 
either side of z = 25. This process continues and at R = 1500, the location z = 25 (and 
75) is now a distinct low-speed region. During this evolution of the mean flow, the peak 
and valley in the r.m.s. distribution as observed at R = 1400 break into additional 
small-scale peak and valley structure. Near the end of the simulation at R = 1500, the 
peak r.m.s. value has reached about lo%, which is typical in a transitional boundary 
layer. The results in this highly nonlinear region reveal that strong three-dimensional 
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FIGURE 18. Mean and r.m.s. u-velocity distribution along the spanwise coordinate at y*/l, = 2.3 
in the nonlinear region under an oblique-mode breakdown: (a) mean value, (b)  r.m.s. value. 

effects appear in both mean and r.m.s. velocities. The large-scale peak-valley structure 
which characterizes the unstable laminar boundary layer is gradually evolving into a 
small-scale rapidly oscillating but more uniform structure (between the r.m.s. peaks). 
At z = 25, for example, a distinct minimum in urms has disappeared owing to the 
emergence of a low-speed mean-flow region which helps amplify the unsteady 
disturbances. Following this trend, we expect that both mean and r.m.s. values will 
eventually reach a uniform state which characterizes the fully developed turbulent 
boundary layer. At R = 1449 which correlates with the rise of wall shear stress (see 
below), the peak u,,, has reached about 4.3 YO. 

To study the flow characteristics in the transition zone, we plot in figure 19 the 
instantaneous u velocity versus time near the wall (at a height of y*/I, = 0.044 and 
z = 0 where u,,, peaks along the spanwise direction) for various Reynolds numbers 
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FIGURE 19. Time signal of u velocity near the wall (y*/Z, = 0.044,~ = 0) in the nonlinear region 
of the oblique-mode breakdown. 

near the end of simulation. Since the wall u velocity is identically zero for all time, the 
velocity trace shown in figure 19 also represents the instantaneous wall shear. As can 
be seen, the time signal at R = 1449, 1466, 1487, although being modulated by 
harmonic waves, shows a dominant frequency of the input oblique wave. However, 
at R = 1500, a ‘transition-like’ signal is evident with additional high-frequency 
disturbances riding on the primary disturbance. It is clear that the flow has entered the 
transition region (see also the mean wall shear distribution given below). Of special 
interest is the observation that small periods of negative streamwise velocity begin to 
appear, indicating an instantaneous flow separation in the transition region. 

As mentioned above, the staggered energy cascade is a distinct feature of the 
oblique-mode breakdown process. In ‘natural ’ environments, those off-cascade ‘quiet’ 
modes must also be present. In the next calculation, we study the effect of these quiet 
modes (e.g. (0, I), (1,O) etc.) on the oblique-mode breakdown. Figures 20 (a) and 20 (b) 
represent the solution obtained by forcing one of the quiet modes, (1,O) (with an 
amplitude of 0.1 YO), in addition to the oblique modes (1, f. 1) (through nonlinear 
interaction all other quiet modes would be excited). Comparing figure 20(a) with figure 
1 1 ,  one finds that all harmonic waves within the staggered cascade evolve essentially 
in a similar fashion for both calculations. The location of spectrum broadening occurs 
at about the same Reynolds number (around R = 1500). The evolution of some of the 
quiet modes is shown in figure 20(b). The presence of the (1,O) mode has triggered the 
growth of many other harmonic waves. The most important ones are listed below: 

(0,1) = (1,1)+(-1,0), 

(192) = (1,1)+(0,1), 

(033) = (092) + a l l ,  

= (1,3)+(1,0), 

(134) = (1,3)+(07 1). 

12-2 
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FIGURE 20. Evolution of maximum r.m.s. u-velocity perturbations for various Fourier modes for the 
oblique-mode breakdown with the addition of the (1,O) mode: (a) staggered cascade modes, (b) off- 
cascade quiet modes. 

In order to further examine the effect of (1,O) forcing, we compare in figure 21 the 
evolution of some of the important modes (1, l), (0,2) and (0,O) with and without the 
(1,O) mode in the initial conditions. It clearly shows that the two-dimensional mode 
(1,O) does not affect either the oblique or the streamwise vortex mode over a wide range 
of Reynolds numbers. However, the amplitude of the mean-flow distortion is higher 
owing to the additional contribution from the now-active quiet modes but the excess 
lasts only up to about R = 1250. 
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FIGURE 21. Comparison of the evolution of the triad and MFD modes under an oblique-mode 
breakdown with or without the addition of the (1,O) mode. 
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FIGURE 22. Average wall shear versus Reynolds numbers for the oblique-mode breakdown with 
or without the addition of the (1,O) mode. 

For R > 1450, we begin to see some visible differences, uis-u-uis oblique modes and 
streamwise vortices, between the two calculations owing to the presence of the 
energetic quiet modes. We plot the average wall shear versus Reynolds number for 
both cases in figure 22. As expected, for the onset of transition (where wall shear rises) 
they differ only slightly from each other. In either case, transition takes place roughly 
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FIGURE 23. Evolution of maximum r.m.s. u-velocity perturbations for multiple oblique-mode 
interaction : (a) forced multiple oblique modes, (b) representative Fourier modes. 

at a Reynolds number of about 1450. This is equivalent to a length Reynolds number 
of about 2.1 x lo6, which is within the range measured in conventional supersonic wind 
tunnels. 

3.4. Multiple oblique-mode interaction 
The oblique-mode breakdown calculations discussed above were performed by forcing 
with only one pair of oblique waves. It would be of interest to study nonlinear 
interaction of multiple (frequency) oblique waves since, in general, oblique waves with 
various frequencies would be present in the natural environment. 
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In this calculation, five pairs of oblique modes with an equal amplitude of 0.01 YO 
are forced at R = 1450. They are (1, & l), (2, & I ) ,  (3, +1), (4, & 1) and (5, & l), 
corresponding to frequencies F of 0.06 x lop4, 0.12 x lo-', 0.18 x lop4, 0.24 x lo-' 
and 0.30 x respectively. The spanwise wavenumber is chosen to be 
/3/R = 0.25 x corresponding to a wave angle of about 58" at R = 1450 (the lower- 
branch neutral point). Nine temporal and spanwise Fourier modes are used in the 
calculation. The computed evolution of r.m.s. u-velocity amplitude is presented in 
figures 23(a) and 23(b). In figure 23(a), we show the amplitudes of the five forced 
oblique modes. At the starting location R = 1450, the two high-frequency modes, (4,l)  
and (5 ,  l), have already passed their linear upper-branch neutral points (see figure 2) 
and are damped right from the beginning. The remaining three modes essentially 
evolve linearly until the streamwise vortex mode (0,2) grows to sufficiently large 
amplitude. Both (2,l) and (3,l) reach the upper-branch neutral location earlier than 
the (1,l) mode. Consequently, the (1,l) mode becomes the dominant disturbance for 
R > 2400. The evolution of all five modes essentially follows a linear trend over a long 
distance downstream because the initial amplitude is quite low (0.01 YO) for all five 
modes. 

In figure 23(b), we plot the amplitudes of two dominant modes (1,l) and (2, l), 
together with some of the important harmonics. The nonlinear interaction of each pair 
of oblique waves would contribute to the growth of the streamwise vortex mode (0,2). 
As can be seen, the (0,2) mode overtakes both the (1,l) and (2,l) modes at around 
R = 2400. Also shown in the figure are three harmonic modes (1,3), (2,3) and (3,3). 
Among these, the (1,3) mode becomes the dominant instability towards the end of 
the calculation. This implies that although the (2,l) mode dominates initially, the 
mechanism which eventually leads to transition is the instability associated with the 
interaction of the (0,2) and (1,l) modes. In a low-disturbance environment, all 
instability waves would begin with quite small amplitudes and evolve linearly. The 
instability wave with the largest linear amplification will eventually dominate (such as 
the (1,l) mode shown above) and the breakdown would be associated with the insta- 
bilities triggered by this most-amplified mode and the streamwise vortex, as we have 
demonstrated in the above example. Of course, the initial amplitude of the oblique 
waves plays a crucial role and must be determined based upon receptivity calculations. 

We compare the above multiple-mode results with those from keeping only one 
primary mode (the (1,l) mode) in figure 24. It clearly shows that the presence of higher 
frequency oblique modes does not affect the (1,l) mode itself, since this mode evolves 
linearly over a long distance downstream. However, since each high-frequency primary 
oblique mode adds an additional contribution to the streamwise vortex mode through 
nonlinear interaction, the (0,2) mode starts with a much higher initial amplitude as 
compared to the single-mode case. As a result, the initial level of the amplitude of the 
(1,3) mode is about two orders of magnitude higher in the multiple-mode case. The 
growth rates of the (0,2) and (1,3) modes are about the same for both cases. Since the 
multiple-mode case starts with much higher initial amplitudes, strong nonlinear 
interaction and transition onset occur earlier than for the single-mode case. Based 
upon the skin-friction rise, transition onset for the former case occurs at R = 2600, as 
compared to R = 2750 for the latter case. 

Nonlinear PSE results in $3.3 indicate that the oblique-wave interaction can lead to 
breakdown to turbulence with a relatively low initial amplitude compared to the 
secondary mechanism. Low-frequency oblique waves would require a much lower 
initial amplitude for breakdown owing to large growth via linear mechanism. To show 
this, we compute the oblique-wave breakdown process with various initial amplitudes 
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FIGURE 24. Comparison of single and multiple oblique-mode interaction for the triad and 
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FIGURE 25. Average wall shear versus Reynolds numbers for various initial amplitudes of the 
oblique-mode breakdown; I; = 0.06 x and / / R  = 0.25 x 

for a disturbance frequency of 0.06 x lop4 (from linear theory, this frequency is 
amplified by almost 5000 times between the lower and upper neutral point for 
P / R  = 0.25 x lop4). The variation of wall shear with Reynolds number for various 
initial amplitudes is shown in figure 25. Transition Reynolds numbers (the rise of wall 
shear) are found to be around 2450, 2800 and 3150 for initial amplitudes of 0.1 %, 
0.01 % and 0.001 %, respectively. We note here that the corresponding logarithmic 
amplitude factors (equation (3.1)) based upon quasi-parallel linear theory at transition 
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are 3.8, 5.8 and 7.4, respectively. Comparison with figure 22 shows that if the initial 
amplitude is 0.1 % both for F = 0.2 x the former will lead to 
transition first at R = 1450 which is close to the neutral location for the latter. 
Additional calculations with an initial amplitude of 0.0001 YO show that the primary 
oblique waves together with their harmonics eventually saturate and transition does 
not occur. A disturbance with frequency lower than 0.06 x may lead to transition 
for an initial amplitude of 0.0001 YO. In fact, additional calculations were performed for 
a Mach 3.5 boundary layer for which transition data were available from Chen et al. 
(1989) who found that transition occurred at R x 3500 in the ‘quiet’ environment and 
R x 1600 with high levels of free-stream disturbances. PSE calculations with an initial 
amplitude of about 0.0001 YO yielded transition Reynolds number quite close to 3500. 

and F = 0.06 x 

4. Conclusions 
Nonlinear PSE is used to study two transition mechanisms in low-supersonic flat- 

plate boundary layers. As in incompressible flow, secondary instability under a two- 
dimensional primary disturbance can also lead to breakdown to turbulence in 
supersonic flows. Qualitatively, this mechanism reveals similar behaviour in com- 
pressible cases as in incompressible ones. The main difference is that the initial 
amplitude (of the primary wave) required for transition onset is higher in compressible 
flows. 

The second mechanism investigated is the oblique-mode breakdown. This 
mechanism involves a pair of oblique first-mode waves with an equal but opposite 
wave angle to the mean flow direction. Nonlinear interaction of these two waves 
produces a streamwise vortex. It is shown that the oblique waves and streamwise 
vortex constitute a nonlinear triad interaction which causes the vortex to grow at a rate 
much faster than the oblique waves, which are amplified linearly. The interaction of the 
vortex ((0,2) mode) and the oblique (( 1, l )  mode) modes give rise to other harmonics 
(e.g. (1,3) mode) and the flow becomes transitional. This oblique mode breakdown also 
constitutes the second stage of the breakdown in the secondary instability mechanism 
where the oblique subharmonics reach sufficient amplitude and their mutual interaction 
produces a streamwise vortex. From then on, the interaction of these subharmonics 
and the vortex will produce a transition scenario discussed here for the oblique-mode 
mechanism. 

Both transition mechanisms are studied at Mach 1.6 by varying the initial amplitudes 
of various two- and three-dimensional first-mode waves. When the two-dimensional 
wave has an initial amplitude on the order of 0.5 % or higher (and three-dimensional 
waves have much lower amplitudes), the secondary instability mechanism is more 
likely to occur. Conversely, when the two-dimensional wave has a lower amplitude and 
the amplitude of the three-dimensional wave exceeds a threshold value (which depends 
on the frequency), oblique-mode breakdown prevails. Since most amplified first-mode 
waves in supersonic flows are three-dimensional, the oblique-wave breakdown 
mechanism appears to be a more likely route to transition (see Goldstein 1990) than 
the traditional secondary instability mechanisms which are often present in 
incompressible boundary layers in a low-disturbance environment. 

Vorticity structures and instantaneous velocity signals are examined for the oblique- 
mode breakdown. The results suggest that a rapid spectrum broadening in the 
spanwise direction results in the early appearance of small-scale streamwise vortical 
structures. The energy cascade under an oblique-mode breakdown reveals a staggered 
pattern. The off-cascade modes have very little effect on the breakdown process. 
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Computed instantaneous velocity signals near the wall show that regions of negative 
wall shear are present in the breakdown stage, indicating an unsteady flow separation. 
Nonlinear PSE calculations also suggest that an initial disturbance amplitude of about 
0.1 % leads to transition Reynolds numbers found commonly in conventional 
supersonic wind tunnels. Calculations also indicate that for transition Reynolds 
numbers obtainable in flight and ' quiet' supersonic wind tunnels, the initial disturbance 
amplitude in the boundary layer must be very small, of O(O.001 %) or even lower, if 
the oblique-mode breakdown is active. 

This work was sponsored by Theoretical Flow Physics Branch, NASA Langley 
Research Center under NASA Contract NAS1-19299. The authors appreciate the 
encouragement and support provided by Drs Ajay Kumar and Craig Streett. 
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